INTRODUCTION

An abrupt change in fracture intensity occurs along the fault zone. The 15 degree isocountour line (ICL) for the peak countour provides an approximate location of this change. The non-systematic pattern in the footwall, to the east of the fault system, displays a strong control on the initiation of fractures within the unit. Data

DATA

An abrupt change in fracture intensity occurs within the footwall, to the east of the fault system. The fractures are highlighted in red. The top of the ramp is breached due to high normal fault intensity. The bo-

PHOTO OBSERVATIONS

Lateral variations in fracture intensity

Vertical variations in fracture intensity

Outcrop-scale normal faults

INTERPRETATIONS

REFERENCES

RESEARCH QUESTIONS

1. How do outcrop-scale fracture networks relate to mapped fault segments and subsidiary structures?

2. How do fracture intensity and orientation vary laterally and vertically?

3. How do fracture networks within a transfer zone with drain accommodated by multiple fault arrays be related to fractures where drainage is accommodated by a single fault?

CONCLUSIONS

Two fault arrays are mapped on the eastern side of the Zion National Park. Faults are interpreted as drained and the transfer ramp connects the two fault arrays. In a strongly segmented fault system, highly systematic junctions are coupled with a single three-directional system.

ACKNOWLEDGEMENTS

Financial support for this research comes from the Department of Geosciences. Thanks to Dr. Steve Rebnitz for advice and comments on an earlier version of this manuscript.