For each integer \(n \geq 0 \), let \(S(n) = n - m^2 \), where \(m \) is the greatest integer with \(m^2 \leq n \). Define a sequence \((a_k)_{k=0}^\infty \) by \(a_0 = A \) and \(a_{k+1} = a_k + S(a_k) \) for \(k \geq 0 \). For what positive integers \(A \) is this sequence eventually constant?

Solution: The sequence is eventually constant if and only if \(A \) is a perfect square.

We see that if at any point \(a_k \) is a perfect square, then \(S(a_k) = 0 \), and thus \(a_{k+1} = a_k + S(a_k) = a_k \).

On the other hand, if \(a_k \) is not a perfect square for some \(k \geq 0 \), then there exists a positive integer \(m \) so that \(m^2 < a_k < (m + 1)^2 \). This gives \(a_k = m^2 + t \) for some \(1 \leq t \leq 2m \) and \(S(a_k) = t \), which yields \(a_{k+1} = m^2 + 2t \). Now we see that \(m^2 < a_k < a_{k+1} = m^2 + 2t \leq m^2 + 4m < (m+2)^2 \). Moreover, since they differ in parity, it is impossible that \(a_{k+1} = m^2 + 2t \) and \((m+1)^2 \) are equal, thus, \(a_{k+1} \) is not a perfect square. Consequently, if \(a_0 \) is not a perfect square, then no subsequent \(a_i \) is a perfect square, and the sequence will never become constant.

Solutions for this problem were submitted by T.J. Gaffney (Las Vegas, NV), Rob Hill (Gambrills, Maryland), Tengiz Kutchava (Georgia, the country), Tom O’Neil (Central Coast of CA), Benjamin Phillabaum (Northbrook, IL), Surajit Rajagopal (India), Victoria Rose (Northbrook, IL), Luciano Santos (Portugal), and Zurab Zakaradze (Georgia, the country).