The point P lies inside the equilateral triangle ABC such that the distance from P to A is 3, the distance from P to B is 4, and the distance from P to C is 5. Find the area of triangle ABC.

Solution: The area of triangle ABC is $25\sqrt{3}/4 + 9$ square units. While many problem solvers set up a system of equations by employing the law of cosines multiple times, we give a more geometric argument here.

We are given that $|PA| = 3$, $|PB| = 4$, and $|PC| = 5$. Rotate the triangle BPA 60 degrees around A so that the edges AB and AC coincide, and let X be the image of the point P. Notice that $|PX| = 3$, $|CX| = 4$, and $|CP| = 5$. Thus, $PX \perp CX$. Also, APX is an equilateral triangle of side length 3. Applying the law of cosines to CXA, we find that

$$|AC| = \sqrt{3^3 + 4^3 - 2 \cdot 3 \cdot 4 \cos(150\degree)} = \sqrt{25 + 12\sqrt{3}},$$

and so the area of ABC is $25\sqrt{3}/4 + 9$ square units.

Solutions for this problem were submitted by Rob Hill (Gambrills, Maryland), Kipp Johnson (Beaverton, OR), Steve King (Pullman, WA), Hari Kishan (India), Thomas Plantin (TU), Surajit Rajagopal (India), Luciano Santos (Portugal), and A.Teitelman (Israel).