Is it possible to use the sixteen digits 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9 as the digits of two numbers, \(x \) and \(y \), such that \(x = 2y \)? (All sixteen digits must be used exactly once.)

Solution: This is not possible.

Notice that the sum of these sixteen digits is 88, and so \(x + y \equiv 1 \pmod{3} \). However, if \(x = 2y \), then \(x + y = 2y + y = 3y \equiv 0 \pmod{3} \).

Solutions for this problem were submitted by M.V. Channakeshava (India), T.J. Gaffney (Las Vegas, NV), Rob Hill (Gambrills, Maryland), Brandon Jeong (Corvallis, OR), Kipp Johnson (Beaverton, OR), Hari Kishan (India), Tin Lam (St. Louis, MO), Tom O’Neil (Central Coast of CA), Surajit Rajagopal (India), Luciano Santos (Portugal), and Dylan Yi (Trinity).