Let $M = \{1, 2, 3, \ldots, 2048\}$. If X is any 15-element subset of M, prove that there are two disjoint subsets of X whose sum of elements is the same, i.e., prove that we can find subsets A and B of X with $A \cap B = \emptyset$ and $\sum_{a \in A} a = \sum_{b \in B} b$. If X is a 12-element subset of M is this result still true?

Solution: Initially we observe that there are $2^{15} - 1 = 32767$ possible nonempty subsets of a 15-element set X. Given $Y \subseteq X$, we see that $\sum_{y \in Y} y \leq \sum_{x \in X} x \leq 15 \cdot 2048 = 30720$. Since there are more possible subsets of X than possible sums of the elements in the subsets of X, there must be two distinct subsets $E, F \subset X$ with $\sum_{n \in E} n = \sum_{n \in F} n$. Now, let $A = E - (E \cap F)$ and $B = F - (E \cap F)$, observe that A, B are nonempty, as E, F are distinct, and that $\sum_{a \in A} a = \sum_{b \in B} b$ as desired.

Finally, consider the case where $X = \{1, 2, 4, \ldots, 2048\} = \{2^0, 2^1, 2^2, \ldots, 2^{11}\}$, so that $|X| = 12$. If it were possible to find disjoint subsets A, B of X with $\sum_{a \in A} a = \sum_{b \in B} b$, we would then find two distinct binary representations for the same natural number, a contradiction. Therefore the result would not be valid in this case.

Solutions for this problem were submitted by Harald Bensom (Oberhausen, Germany), Clive Bixby (San Antonio, not his real name), M.V.Channakeshava (Bengaluru, India), Sandipan Dey (Kolkata, India), R. Govindan (Chennai, India), Kipp Johnson (Beaverton, OR), Hari Kishan (India), Tin Lam (St. Louis, MO), and Tom O’Neil (Central Coast, CA).